クラスに同じ誕生日の人がいる?

シェアする

 

クラスに同じ誕生日の人がいる確率

 

確率自体はそれほど難しくないですが、計算量が半端ない。

※1年365日仮定で計算します

 

クラスに同じ誕生日の人がいる確率

 

\(n\)人のクラスでの確率

順番に考える。余事象を利用。まずは、全員の誕生日が異なる確率を求める。

 

1人目……いつでも良い。\(\displaystyle\frac{365}{365}\)

 

2人目……1人目と被らないこと。\(\displaystyle\frac{364}{365}\)

 

3人目……1 , 2人目と被らないこと。\(\displaystyle\frac{363}{365}\)

 

\(\cdots\)

 

\(n\)人目……\(n-1\)人と被らないこと。\(\displaystyle\frac{365-(n-1)}{365}\)

 

全員の誕生日が異なる確率はこれらの積なので

 

\(\displaystyle\frac{_{365}P_{n}}{365^n}\)

 

求めたい、同じ誕生日の組が存在する確率はこれの余事象。

 

\(1-\displaystyle\frac{_{365}P_{n}}{365^n}\)

 

 

具体例

23人クラスの時におよそ確率が\(\displaystyle\frac{1}{2}\)になります。

 

40人クラスだとおよそ9割にも達します。

 

意外かもしれないですが、この確率は必ずしも「自分自身と」同じ誕生日の人がいる確率ではないので。「自分自身と」の確率は以下に続きます。

 

クラスに自分自身と同じ誕生日の人がいる確率

上より簡単です。

\(n\)人のクラスでの確率

順番に考える。余事象を利用。

 

1人目……自分自身と被らないこと。\(\displaystyle\frac{364}{365}\)

 

2人目……自分自身と被らないこと。\(\displaystyle\frac{364}{365}\)

 

\(\cdots\)

 

\(n-1\)人目……\(n-1\)人と被らないこと。\(\displaystyle\frac{364}{365}\)

 

全員の誕生日が自分自身と異なる確率はこれらの積なので

 

\(\biggl(\displaystyle\frac{364}{365}\biggr)^{n-1}\)

 

求めたい、同じ誕生日の組が存在する確率はこれの余事象。

 

\(1-\biggl(\displaystyle\frac{364}{365}\biggr)^{n-1}\)

 

これだと40人でも10パーセント程度。直感にも合うのではないでしょうか。

 

 

シェアする