[mathjax]
目次
問題
\(-1\leq \alpha\leq 1\)
解答
\( f(z)=\displaystyle\frac{z^{\alpha}}{z^2+2z\cos\theta+1}\)とおき、以下の経路で積分する。
留数定理より以下の等式が導かれる。
\(\displaystyle\int_{r}^{R} \displaystyle\frac{x^{\alpha}}{x^2+2x\cos\theta+1}dx+\displaystyle\int_{C_{2}} \displaystyle\frac{z^{\alpha}}{z^2+2z\cos\theta+1}dz\)
\(+\displaystyle\int_{R}^{r} \displaystyle\frac{x^{\alpha}e^{2\pi i\alpha}}{x^2+2x\cos\theta+1}dx+\displaystyle\int_{C_{4}} \displaystyle\frac{z^{\alpha}}{z^2+2z\cos\theta+1}dz\)
\(=2\pi i \times(留数和)\)
左辺第三項は一周しているので\(e^{2\pi i\alpha}\) 倍される。
左辺第一項と第三項
\(R\to\infty\)、\(r\to 0\)極限で
\(\displaystyle\int_{r}^{R} \displaystyle\frac{x^{\alpha}}{x^2+2x\cos\theta+1}dx+\displaystyle\int_{R}^{r} \displaystyle\frac{x^{\alpha}e^{2\pi i\alpha}}{x^2+2x\cos\theta+1}dx\)
\(\displaystyle\int_{0}^{\infty} \displaystyle\frac{x^{\alpha}}{x^2+2x\cos\theta+1}dx-\displaystyle\int_{0}^{\infty} \displaystyle\frac{x^{\alpha}e^{2\pi i\alpha}}{x^2+2x\cos\theta+1}dx\)
\(=(1-e^{2\pi i\alpha})\displaystyle\int_{0}^{\infty} \displaystyle\frac{x^{\alpha}}{x^2+2x\cos\theta+1}dx\)
左辺第二項と第四項
結果から言うと、\(R\to\infty\)、\(r\to 0\)極限でともに\(0\)になる。
左辺第二項
\(|z|=R\to \infty\)より\(\displaystyle\frac{1}{|z^2+2z\cos\theta+1|}\leq \displaystyle\frac{1}{kR^2}\)でおさえられる。
\(\biggl|\displaystyle\int_{C_{2}} \displaystyle\frac{z^{\alpha}}{z^2+2z\cos\theta+1}dz\biggr|\)
\(\leq \displaystyle\int_{C_{2}}\displaystyle\frac{|z^{\alpha}|}{|z^2+2z\cos\theta+1|}|dz|\leq \displaystyle\frac{R^{\alpha}}{kR^2}\times 2\pi R\)
\(=\displaystyle\frac{2\pi}{kR^{1-\alpha}}\to 0\) (\(1-\alpha>0\)、\(R\to\infty\))
左辺第四項
\(|z|=r\to 0\)より\(\displaystyle\frac{1}{|z^2+2z\cos\theta+1|}\leq \displaystyle\frac{1}{kr}\)でおさえられる。
\(\biggl|\displaystyle\int_{C_{4}} \displaystyle\frac{z^{\alpha}}{z^2+2z\cos\theta+1}dz\biggr|\)
\(\leq \displaystyle\int_{C_{4}}\displaystyle\frac{|z^{\alpha}|}{|z^2+2z\cos\theta+1|}|dz|\leq \displaystyle\frac{r^{\alpha}}{kr}\times 2\pi r\)
\(=\displaystyle\frac{2\pi r^{\alpha}}{k}\to 0\) (\(\alpha>0\)、\(r\to 0\))
右辺
\(\displaystyle\frac{z^{\alpha}}{z^2+2z\cos\theta+1}=\displaystyle\frac{z^{\alpha}}{(z+e^{i\theta})(z+e^{-i\theta})}\) より留数は
\(\mathrm{Res}(f(z) , -e^{i\theta})=\biggl[\displaystyle\frac{z^{\alpha}}{2z+2\cos\theta}\biggr]_{-e^{i\theta}}=-\displaystyle\frac{(-e^{i\theta})^{\alpha}}{2i\sin\theta}\)
\(\mathrm{Res}(f(z) , -e^{-i\theta})=\biggl[\displaystyle\frac{z^{\alpha}}{2z+2\cos\theta}\biggr]_{-e^{-i\theta}}=\displaystyle\frac{(-e^{-i\theta})^{\alpha}}{2i\sin\theta}\)
よって
\(右辺=2\pi i\biggl[-\displaystyle\frac{(-e^{i\theta})^{\alpha}}{2i\sin\theta}+\displaystyle\frac{(-e^{-i\theta})^{\alpha}}{2i\sin\theta}\biggr]\)
\(=-2\pi i(-1)^{\alpha}\cdot \displaystyle\frac{e^{i\alpha\theta}-e^{-i\alpha\theta}}{2i \sin\theta}=-\displaystyle\frac{2\pi i e^{\pi i\alpha}\sin\alpha\theta}{\sin\theta}\)
まとめ
\(R\to\infty\)、\(r\to 0\)極限で留数定理の式は以下のようになる。
\((1-e^{2\pi i\alpha})\displaystyle\int_{0}^{\infty} \displaystyle\frac{x^{\alpha}}{x^2+2x\cos\theta+1}dx=-\displaystyle\frac{2\pi i e^{\pi i\alpha}\sin\alpha\theta}{\sin\theta}\)
よって
\(\displaystyle\int_{0}^{\infty} \displaystyle\frac{x^{\alpha}}{x^2+2x\cos\theta+1}dx\)
\(=-\displaystyle\frac{2\pi i e^{\pi i\alpha}\sin\alpha\theta}{\sin\theta(1-e^{2\pi i\alpha})}\)
\(=\displaystyle\frac{\pi\sin\alpha\theta}{\sin\theta}\cdot\displaystyle\frac{2i}{e^{\pi i\alpha}-e^{\pi i\alpha}}\)
\(=\displaystyle\frac{\pi\sin\alpha\theta}{\sin\theta\sin\pi\alpha}\)
答え
\(\displaystyle\int_{0}^{\infty} \displaystyle\frac{x^{\alpha}}{x^2+2x\cos\theta+1}dx=\displaystyle\frac{\pi\sin\alpha\theta}{\sin\theta\sin\pi\alpha}\)