積分問題102番

積分問題
スポンサーリンク

[mathjax]

 

問題

 

 

計算

\(\displaystyle\int\log(x^3+x)dx\)

 

\(x\log(x^3+x)-\displaystyle\int\displaystyle\frac{3x^2+1}{x^3+x}\cdot x dx\) ※部分積分

 

\(=x\log(x^3+x)-\)\(\displaystyle\int\displaystyle\frac{3x^2+1}{x^2+1}dx\)

 

\(=x\log(x^3+x)-\)\(\displaystyle\int\displaystyle\frac{3(x^2+1)-2}{x^2+1}dx\)

 

\(=x\log(x^3+x)-\)\(\displaystyle\int\biggl(3-\displaystyle\frac{2}{x^2+1}\biggr)dx\)

 

\(=x\log(x^3+x)-3x+2\tan^{-1} x+C\)

 

答え

\(x\log(x^3+x)-3x+2\tan^{-1} x+C\)

 

タイトルとURLをコピーしました