[mathjax]
積分問題63番
思考
三角関数の積分なので
\(t=\tan \displaystyle\frac{\theta}{2}\)の置き換えをします。
\(d\theta=\displaystyle\frac{2dt}{1+t^2}\)と\(\cos \theta=\displaystyle\frac{1-t^2}{1+t^2}\)を代入。
計算
\(\displaystyle\int\displaystyle\frac{d\theta}{a+b\cos \theta}=\displaystyle\int\displaystyle\frac{2dt}{a+b+(a-b)t^2}\)
\(=\displaystyle\frac{2}{a-b}\displaystyle\int\displaystyle\frac{dt}{t^2+\displaystyle\frac{a+b}{a-b}}\)
\(=\displaystyle\frac{2}{a-b}\sqrt{\displaystyle\frac{a-b}{a+b}}\tan^{-1}\sqrt{\displaystyle\frac{a-b}{a+b}}t+C\)
\(=\displaystyle\frac{2}{\sqrt{a^2-b^2}}\tan^{-1}\sqrt{\displaystyle\frac{a-b}{a+b}}\tan\displaystyle\frac{\theta}{2}+C\) (変数を戻した)
答え
\(\displaystyle\frac{2}{\sqrt{a^2-b^2}}\tan^{-1}\sqrt{\displaystyle\frac{a-b}{a+b}}\tan\displaystyle\frac{\theta}{2}+C\)