目次
円柱座標の勾配、発散、ラプラシアン
\(x=r\cos\theta\)、\(y=r\sin\theta\)、\(z=z\)
\(r=\sqrt{x^2+y^2}\)、\(\theta=\tan^{-1}\displaystyle\frac{y}{x}\)
勾配
\(\nabla=\displaystyle\frac{\partial}{\partial x}\boldsymbol{e_{x}}+\displaystyle\frac{\partial}{\partial y}\boldsymbol{e_{y}}+\displaystyle\frac{\partial}{\partial z}\boldsymbol{e_{z}}\) の成分を計算していく。
x成分
\(\displaystyle\frac{\partial}{\partial x}=\displaystyle\frac{\partial r}{\partial x}\displaystyle\frac{\partial}{\partial r}+\displaystyle\frac{\partial \theta}{\partial x}\displaystyle\frac{\partial}{\partial \theta}+\displaystyle\frac{\partial z}{\partial x}\displaystyle\frac{\partial}{\partial z}\)を求めたい。
\(\displaystyle\frac{\partial r}{\partial x}=\displaystyle\frac{\partial}{\partial x}\sqrt{x^2+y^2}=\displaystyle\frac{x}{\sqrt{x^2+y^2}}=\displaystyle\frac{x}{r}=\cos\theta\)
\(\displaystyle\frac{\partial \theta}{\partial x}=\displaystyle\frac{\partial}{\partial x}\tan^{-1}\displaystyle\frac{y}{x}=-\displaystyle\frac{y}{x}\cdot\displaystyle\frac{1}{1+(\frac{y}{x})^2}=-\displaystyle\frac{y}{x^2+y^2}=-\displaystyle\frac{\sin\theta}{r}\)
\(\displaystyle\frac{\partial z}{\partial x}=0\)
これらをもとの式に代入すると
$$\displaystyle\frac{\partial}{\partial x}=\cos\theta \displaystyle\frac{\partial}{\partial r}-\displaystyle\frac{\sin\theta}{r}\displaystyle\frac{\partial}{\partial \theta}$$
y成分
\(\displaystyle\frac{\partial}{\partial y}=\displaystyle\frac{\partial r}{\partial y}\displaystyle\frac{\partial}{\partial r}+\displaystyle\frac{\partial \theta}{\partial y}\displaystyle\frac{\partial}{\partial \theta}+\displaystyle\frac{\partial z}{\partial y}\displaystyle\frac{\partial}{\partial z}\)
\(\displaystyle\frac{\partial r}{\partial y}=\displaystyle\frac{\partial}{\partial y}\sqrt{x^2+y^2}=\displaystyle\frac{y}{\sqrt{x^2+y^2}}=\displaystyle\frac{y}{r}=\sin\theta\)
\(\displaystyle\frac{\partial \theta}{\partial y}=\displaystyle\frac{\partial}{\partial y}\tan^{-1}\displaystyle\frac{y}{x}=\displaystyle\frac{1}{x}\cdot\displaystyle\frac{1}{1+(\frac{y}{x})^2}=\displaystyle\frac{x}{x^2+y^2}=\displaystyle\frac{\cos\theta}{r}\)
\(\displaystyle\frac{\partial z}{\partial y}=0\)
これらをもとの式に代入すると
$$\displaystyle\frac{\partial}{\partial y}=\sin\theta \displaystyle\frac{\partial}{\partial r}+\displaystyle\frac{\cos\theta}{r}\displaystyle\frac{\partial}{\partial \theta}$$
z成分
$$\displaystyle\frac{\partial}{\partial z}$$
まとめ
\(\nabla=\displaystyle\frac{\partial}{\partial x}\boldsymbol{e_{x}}+\displaystyle\frac{\partial}{\partial y}\boldsymbol{e_{y}}+\displaystyle\frac{\partial}{\partial z}\boldsymbol{e_{z}}\)
\(=\biggl(\cos\theta\displaystyle\frac{\partial}{\partial r}-\displaystyle\frac{\sin\theta}{r}\displaystyle\frac{\partial}{\partial \theta}\biggr)\boldsymbol{e_{x}}+\biggl(\sin\theta\displaystyle\frac{\partial}{\partial r}+\displaystyle\frac{\cos\theta}{r}\displaystyle\frac{\partial}{\partial \theta}\biggr)\boldsymbol{e_{y}}+\displaystyle\frac{\partial}{\partial z}\boldsymbol{e_{z}}\)
\(=\biggl(\cos\theta\displaystyle\frac{\partial}{\partial r}-\displaystyle\frac{\sin\theta}{r}\displaystyle\frac{\partial}{\partial \theta}\biggr)(\boldsymbol{e_{r}}\cos\theta-\boldsymbol{e_{\theta}}\sin\theta)\)
\(+\biggl(\sin\theta\displaystyle\frac{\partial}{\partial r}+\displaystyle\frac{\cos\theta}{r}\displaystyle\frac{\partial}{\partial \theta}\biggr)(\boldsymbol{e_{r}}\sin\theta+\boldsymbol{e_{\theta}}\cos\theta)+\displaystyle\frac{\partial}{\partial z}\boldsymbol{e_{z}}\)
\(=\displaystyle\frac{\partial}{\partial r}\boldsymbol{e_{r}}+\displaystyle\frac{1}{r}\displaystyle\frac{\partial}{\partial \theta}\boldsymbol{e_{\theta}}+\displaystyle\frac{\partial}{\partial z}\boldsymbol{e_{z}}\)
※\(\boldsymbol{e_{x}}=\boldsymbol{e_{r}}\cos\theta-\boldsymbol{e_{\theta}}\sin\theta\)、\(\boldsymbol{e_{y}}=\boldsymbol{e_{r}}\sin\theta+\boldsymbol{e_{\theta}}\cos\theta\) という関係式を使った。
結果
$$\nabla f=\displaystyle\frac{\partial f}{\partial r}\boldsymbol{e_{r}}+\displaystyle\frac{1}{r}\displaystyle\frac{\partial f}{\partial \theta}\boldsymbol{e_{\theta}}+\displaystyle\frac{\partial f}{\partial z}\boldsymbol{e_{z}}$$
発散
\(\boldsymbol{A}=A_{r}\boldsymbol{e_{r}}+A_{\theta}\boldsymbol{e_{\theta}}+A_{z}\boldsymbol{e_{z}}\)
発散とは
$$\nabla\cdot\boldsymbol{A}=\displaystyle\frac{\partial A_{x}}{\partial x}+\displaystyle\frac{\partial A_{y}}{\partial y}+\displaystyle\frac{\partial A_{z}}{\partial z}$$
右辺第一項
\(\displaystyle\frac{\partial A_{x}}{\partial x}=\displaystyle\frac{\partial r}{\partial x}\displaystyle\frac{\partial A_{x}}{\partial r}+\displaystyle\frac{\partial \theta}{\partial x}\displaystyle\frac{\partial A_{x}}{\partial \theta}+\displaystyle\frac{\partial z}{\partial x}\displaystyle\frac{\partial A_{x}}{\partial z}\)
\(=\cos\theta\displaystyle\frac{\partial A_{x}}{\partial r}-\displaystyle\frac{\sin \theta}{r}\displaystyle\frac{\partial A_{x}}{\partial \theta}\)
\(=\cos\theta\displaystyle\frac{\partial}{\partial r}(A_{r}\cos\theta-A_{\theta}\sin\theta)-\displaystyle\frac{\sin\theta}{r}\displaystyle\frac{\partial}{\partial \theta}(A_{r}\cos\theta-A_{\theta}\sin\theta)\)
\(=\cos\theta\biggl(\displaystyle\frac{\partial A_{r}}{\partial r}\cos\theta-\displaystyle\frac{A_{\theta}}{\partial r}\sin\theta\biggr)\)
\(-\displaystyle\frac{\sin \theta}{r}\biggl(-A_{r}\sin\theta+\displaystyle\frac{\partial A_{r}}{\partial \theta}\cos\theta-A_{\theta}\cos\theta-\displaystyle\frac{A_{\theta}}{\partial \theta}\sin\theta\biggr)\)
変形過程で、勾配計算の時に導いた以下の式を利用した。
\(\displaystyle\frac{\partial r}{\partial x}=\cos\theta\)、\(\displaystyle\frac{\partial \theta}{\partial x}=-\displaystyle\frac{\sin\theta}{r}\)、\(\displaystyle\frac{\partial z}{\partial x}=0\)、\(A_{x}=A_{r}\cos\theta-A_{\theta}\sin\theta\)
右辺第二項
\(\displaystyle\frac{\partial A_{y}}{\partial y}=\displaystyle\frac{\partial r}{\partial y}\displaystyle\frac{\partial A_{y}}{\partial r}+\displaystyle\frac{\partial \theta}{\partial y}\displaystyle\frac{\partial A_{y}}{\partial \theta}+\displaystyle\frac{\partial z}{\partial y}\displaystyle\frac{\partial A_{y}}{\partial z}\)
\(=\sin\theta\displaystyle\frac{\partial A_{y}}{\partial r}+\displaystyle\frac{\cos \theta}{r}\displaystyle\frac{\partial A_{y}}{\partial \theta}\)
\(=\sin\theta\displaystyle\frac{\partial}{\partial r}(A_{r}\sin\theta+A_{\theta}\cos\theta)+\displaystyle\frac{\cos \theta}{r}\displaystyle\frac{\partial}{\partial \theta}(A_{r}\sin\theta+A_{\theta}\cos\theta)\)
\(=\sin\theta\biggl(\displaystyle\frac{\partial A_{r}}{\partial r}\sin\theta+\displaystyle\frac{A_{\theta}}{\partial r}\cos\theta\biggr)\)
\(+\displaystyle\frac{\cos \theta}{r}\biggl(A_{r}\cos\theta+\displaystyle\frac{\partial A_{r}}{\partial \theta}\sin\theta-A_{\theta}\sin\theta+\displaystyle\frac{A_{\theta}}{\partial \theta}\cos\theta\biggr)\)
変形過程で、勾配計算の時に導いた以下の式を利用した。
\(\displaystyle\frac{\partial r}{\partial y}=\sin\theta\)、\(\displaystyle\frac{\partial \theta}{\partial y}=\displaystyle\frac{\cos\theta}{r}\)、\(\displaystyle\frac{\partial z}{\partial y}=0\)、\(A_{y}=A_{r}\sin\theta+A_{\theta}\cos\theta\)
右辺第三項
$$\displaystyle\frac{\partial A_{z}}{\partial z}$$
まとめ
上の結果を発散の式に代入すると
$$\nabla\cdot\boldsymbol{A}=\displaystyle\frac{\partial A_{r}}{\partial r}+\displaystyle\frac{A_{r}}{r}+\displaystyle\frac{1}{r}\displaystyle\frac{\partial A_{\theta}}{\partial \theta}+\displaystyle\frac{\partial A_{z}}{\partial z}$$
$$=\displaystyle\frac{1}{r}\displaystyle\frac{\partial}{\partial r}(rA_{r})+\displaystyle\frac{1}{r}\displaystyle\frac{\partial A_{\theta}}{\partial \theta}+\displaystyle\frac{\partial A_{z}}{\partial z}$$
ラプラシアン
\(\Delta f=\nabla\cdot(\nabla f)=\nabla\cdot\biggl(\displaystyle\frac{\partial f}{\partial r}\boldsymbol{e_{r}}+\displaystyle\frac{1}{r}\displaystyle\frac{\partial f}{\partial \theta}\boldsymbol{e_{\theta}}+\displaystyle\frac{\partial f}{\partial z}\boldsymbol{e_{z}}\biggr)\)
\(A_{r}=\displaystyle\frac{\partial f}{\partial r}\)、\(A_{\theta}=\displaystyle\frac{1}{r}\displaystyle\frac{\partial f}{\partial \theta}\)、\(A_{z}=\displaystyle\frac{\partial f}{\partial z}\)として、上の発散の式を適用すると
$$\Delta f=\displaystyle\frac{1}{r}\displaystyle\frac{\partial}{\partial r}\biggl(r\displaystyle\frac{\partial f}{\partial r}\biggr)+\displaystyle\frac{1}{r^2}\displaystyle\frac{\partial^2 f}{\partial \theta ^2}+\displaystyle\frac{\partial^2 f}{\partial z^2}$$